ICANN VIP Project: Latin Report
John C Klensin[footnoteRef:1][footnoteRef:2] [1: This review was prepared at the request of the ICANN Variant Information Project Team and partially supported by ICANN. It reflects the author’s personal views and may not reflect the views of ICANN staff, the members of the VIP teams, or other personnel associated with ICANN. Unlike the other reports, there was no preliminary review of the Latin report while it was in its working draft phase, so the review reflects a certain level of nit-picking about issues that the teams may have eliminated from the other reports by accepting suggestions about those drafts.
] [2: This version of these notes is a correction to the version posted to the forum on 14 November. An error on my part caused the wrong version to be submitted and posted. My apologies to the Latin team and the community for the confusion and thanks to ICANN staff for permitted the correct version to be submitted. –John Klensin]

Summary: The report appears to be well-researched and the conclusions are reasonable and appropriate given the team’s data and any additional information that is available to me. The errors and issues identified below are largely technical and terminology issues, rather than actual threats to validity. The exception is a fundamental issue with most of the team reports: there is no evidence, at least in the report text, that the team has a comprehensive understanding of the use of the script in all of the languages that use it. Consequently, one cannot be sure that there is no language or application that uses the script whose behavior might call for a different conclusion.
 --
I note with interest that the members of the team seem to have their backgrounds primarily or exclusively in European languages that use the Latin script. As the report notes, Latin script is used for more languages than any other. Some of those languages are quite diverse and unrelated to the original European languages (and their phonemes) with which the script evolved. It would be helpful to evaluators if the report identified the sources of information for its observations about use in non-Latin scripts.
For convenience in the remarks that follow, the term “Latin-script languages” is used to describe the set of languages that are normally written in the Latin script. Whether they might also be written in other ways is not relevant to either the report or to this review.
In the opinion of this reviewer, the report's attempts to be thorough extend in directions that lead to confusion and lack of clarity. Two or three areas stand out in this regard:
IDNA2008 replaced IDNA2003 in response to a number of issues with the former, many of them identified by the ICANN community. Key to those differences is that a string is either allowed as a label under IDNA2008 or it is not. There are no ambiguities brought about by normalization (or other mappings) or the lack thereof, differences between strings that can actually be represented in ACE (Punycode algorithm output) form and strings that are valid in native-character form but that cannot be converted without loss of information: there are only U-labels, the symmetrically equivalent A-labels, and strings that are invalid as IDNA labels. The topic of top-level variants (or other relationships among names) never existed during the IDNA2003 lifespan. Consequently, IDNA2003 should be considered in these reports, if at all, only in transition concepts. Instead, this report (and some others), is confusing about strings that are invalid in labels, apparently discussing provisions for treating them as variants.
Without being explicit, the report apparently has its own definition of what an “abstract character” actually is. The difficulty may arise from the sample definitions supplied to the various VIP teams but, ultimately, there are only “abstract characters” as Unicode defines them with the understanding that the Unicode definition does not appear to be consistently applied within Unicode. Under one form of the Unicode definition “found at more than one code point in the Unicode Character Code Chart” (Section 1, first paragraph) is simply meaningless for normalized strings (and utterly meaningless with regard to labels, which, by definition, cannot appear in those charts). Under another, ANGSTROM SIGN (U+212B) and LATIN CAPITAL LETTER A WITH RING ABOVE (U+00C5) are the same abstract character while LATIN CAPITAL LETTER A (U+0041) and CYRILLIC CAPITAL LETTER A (U+0410) are not. The logic here, and whether there might be still other definitions, is certainly beyond the understanding of non-experts (and many experts). The concept may still be useful, but great caution – I believe more caution than this report uses -- should be used to make its precise intended meaning clear.
Similarly, the mandate for these teams was to look at issues associated with possible special treatment of strings as top-level domain labels. It is entirely plausible to have different rules and restrictions for labels that are assigned, delegated, and managed within enterprises, labels managed by registries (and often registrars) that are established to manage domains used primarily for delegation to other entities (normally top-level and some second-level domains) and labels entered into (and normally delegated from) the root. I I personally believe that these reports are improved when they reflect on the differences among these groups, but they become confusing (and possibly misleading) when they make sweeping statements about what is permitted for “names in the DNS”. An example of the problem in this report is the last sentence of the first paragraph of Section 3. The statement about “all registration of names in the DNS” is simply false unless “registration” is defined in a very special way (a way that would be at variance with the usage in RFC 1591). See RFCs 2181 and 6055 for a discussion on non-LDH strings in the DNS in non-IDNA contexts. As a more subtle example of the problems introduced by letting the different restrictions at different levels get confused, see Section 5.1. While the group may not be aware of restrictions to prevent visual confusion in that second group, examples abound in deeper levels of some enterprise domains where special efforts have been used to avoid confusion. It may also be interesting to note that, if these characters appear in IDNA[2008] labels, all but one of the ambiguities disappear because the upper-case characters are not permitted . And the remaining case (“l” and “1”) cannot appear in a TLD name because numerals are not permitted.
To save time and space, the comments that follow are simply listed as examples of areas in which this report may need more review or effort before being taken at face value and used for consolidation with others or further policy development. They are not all of the same level of importance or difficulty. While their order roughly follows the ordering in the report, it has no particular significance.
(1) The description of Unicode blocks associated with Latin script is correct, but appears to exclude any Latin abstract (Unicode definition) character that does not exist in precomposed form but, instead, must be assembled using combining characters such as those at U+0300ff (see Section 3, paragraph 4ff). There are many such characters, as the report seems to note in other contexts.

(2) The discussion of Case Sensitivity in Section 4.1 and the assumptions it makes illustrate another problem. First, there is no universal assumption –across languages and cultures that use Latin script—about whether lower-case and upper-case characters are equivalent. In many situations, they obviously are not. In many Latin-script languages, starting a sentence with a lower-case letter is an error for which primary school students are held accountable. In dictionaries, they are treated as equivalent for most Latin-script languages but not necessarily in all of them. For users of computer systems, what is and is not equivalent in this area is a matter of learned behavior. We have had systems that use only a single case (typically upper) for identifiers, systems that support two cases and always treat them as distinct (e.g., Multics, Unix, and most of their descendants), and systems that support two cases and treat them as always equivalent (e.g., Microsoft Windows). In each case, human beings –who are very good at this sort of thing—get used to the convention. They may complain about one particular convention or not, but they do adapt and often then assume that all other behaviors are unnatural. It may be difficult for some users to understand that upper case forms of non-ASCII Latin characters are not equivalent to lower case forms (indeed, are not permitted at all), but they will get used to it. Indeed, for those languages and writing systems in with decorations appear in lower-case forms but not n upper-case ones, users have been familiar with the distinction and non-equivalence since childhood.

(3) The assertion about “most computer keyboards” in Section 4.1 is interesting unless it is referring to “most computer keyboards that support Latin characters” (in which case it is almost trivial). Otherwise, it would be helpful if the team documented how they count to get to “most”.

(4) It is interesting that the report uses the example of the German city of Köln (Koeln, Cologne) several times. If one were to adopt a liberal model of what constitutes a “variant”, all three might be considered as part of a single variant label set. An even more interesting example is posed by a different German city, München (Muenchen, Munich, Monaco) not merely because it has four commonly-used names (the fourth one in Italian) that would be entitled to be treated as variants rather than three but because that fourth name would presumably be unacceptable due to being string-identical to the name of the Principality associated with the “.MC” ccTLD. For variant policy purposes, it illustrates the need to develop policies for situations in which some members of a a variant set can be allocated (or even reserved as tong as they are kept together) but external realities may make that impossible. These cases may be more common than the team may assume. The report should have covered this type of case (and its interaction with GAC Guidelines, etc.) in Section 10 but did not.

(5) If the team believes that the “display forms” discussion in Section 6.1 is important (I agree that it is), it would be useful to illustrate and discuss some of the more extremely decorated typeface families, not just the examples shown in the report.
Incidentally, the term “font” is used in the report where “typeface family” is probably intended. These more exotic typeface families – which could easily appear in domain names written in running text – could make the table in Section 5.1 look much different.
(6) Footnote 13 fails to distinguish between “normalizing” a string to lower case (incorrect terminology even if that were done) and “case folding” the string. IDNA2003 uses the latter, which occasionally produces results that are quite surprising to most users (i.e., those who are not quite familiar with Unicode operations and their effects). Some of the other discussions of normalization, especially in Section 6.5 and 6.6, are also incorrect in detail but the problems are too complex to discuss in this review.

(7) The “decorative and contrastive” distinction made in Section 6.4 would be very useful if it worked. Unfortunately, as the report essentially points out in other sections, what is “decorative” for one user and language context is “contrastive” (or just an ordinary spelling error) to another, See the examples of “ö” in Swedish (decorative if the convention is just to drop the diaeresis when it is inconvenient) and German (can be changed to “oe” but simply dropping the diaeresis is a spelling error albeit one that may be understood and tolerated in context).

(8) The discussion of the “paypal” string in Section 7 has been a common example around ICANN and the community since it was first introduced (in large measure to illustrate an entirely different problem associated with the ease of obtaining bogus certificates for phishing domains). But the belief that it, and cases like it, can be prevented by prohibitions on mixed-script labels does not generalize well. In particular, if one substitutes a numeral-1 for the lower case “l”, the string “рачра1” can be written entirely in Cyrillic characters. That forms an approximation, especially is written in a typeface that does not differentiate well between the final digit and lower case “L”, that is more than adequate to trap a user who has no reason to be suspicious. This case is an example of the reason why it has been repeated suggested (by this reviewer as well as others) that, if one is trying to so “same script” confusability evaluations, it is necessary to treat Greek, Latin, and Cyrillic as a single script.

(9) The example in Section 10.2 could be carried somewhat further if one noted that, if these cases are permitted, “hotel-airport.cologne” and perhaps “airport-hotel.cologne”, are equally likely. The question of where and how the line is drawn is, as the report points out in other ways, perhaps the fundamental problem with Latin-script variants (and with many other scripts as well).

